Abstract
Peroxisome proliferated receptors (PPARs) are important targets for drugs used in the treatment of various metabolic disorders. We have reported 4-hydroxy benzylidene derivatives of thiazolidine-2,4-diones with reversed orientation in the active site of PPARγin our earlier communication. With the reversed conformation of TZD, fitting the established pharmacophore was discussed. The current simulation studies revolves around the 2,4-dihydroxy benzylidene derivatives expecting H-bonding interactions similar to Rosiglitazone’s acidic head. The docking protocol was validated by enrichment studies using decoys and actives from DUD. Designed compounds were showing interactions similar to the actives in the top 10%, 5% and 1%. They also exhibited H-bonding interactions similar to their monohydroxy counterparts without any additional H-bonding interactions due to introduction of additional hydroxy functional groups. Predicted ADMET report reveals that 5 molecules show favourable hERG-I and -II properties and nine compounds show best metabolic stability.References
Cockram, C., The epidemiology of diabetes mellitus in the Asia-Pacific region. Hong Kong Med J 2000, 6 (1), 43-52.
Hunt, K. J.; Schuller, K. L., The increasing prevalence of diabetes in pregnancy. Obstet Gynecol Clin North Am 2007, 34 (2), 173-199.
https://doi.org/10.1016/j.ogc.2007.03.002
Elbrecht, A.; Chen, Y.; Cullinan, C. A.; Hayes, N.; Leibowitz, M. D.; Moller, D. E.; Berger, J., Molecular cloning, expression and characterization of human peroxisome proliferator activated receptors ?1 and ?2. Biochem Biophys Res Comm 1996, 224 (2), 431-437.
https://doi.org/10.1006/bbrc.1996.1044
Mukherjee, R.; Jow, L.; Croston, G. E.; Paterniti, J. R., Identification, characterization, and tissue distribution of human peroxisome proliferator-activated receptor (PPAR) isoforms PPAR?2 versus PPAR?1 and activation with retinoid X receptor agonists and antagonists. J Biol Chem 1997, 272 (12), 8071-8076.
https://doi.org/10.1074/jbc.272.12.8071
Kota, B. P.; Huang, T. H.-W.; Roufogalis, B. D., An overview on biological mechanisms of PPARs. Pharmacol Res 2005, 51 (2), 85-94.
https://doi.org/10.1016/j.phrs.2004.07.012
Lehrke, M.; Lazar, M. A., The many faces of PPAR?. Cell 2005, 123 (6), 993-999.
https://doi.org/10.1016/j.cell.2005.11.026
Daynes, R. A.; Jones, D. C., Emerging roles of PPARs in inflammation and immunity. Nature Rev Immunol 2002, 2 (10), 748-759.
https://doi.org/10.1038/nri912
Xu, H. E.; Lambert, M. H.; Montana, V. G.; Parks, D. J.; Blanchard, S. G.; Brown, P. J.; Sternbach, D. D.; Lehmann, J. M.; Wisely, G. B.; Willson, T. M., Molecular recognition of fatty acids by peroxisome proliferator–activated receptors. Mol Cell 1999, 3 (3), 397-403.
https://doi.org/10.1016/S1097-2765(00)80467-0
Willson, T. M.; Cobb, J. E.; Cowan, D. J.; Wiethe, R. W.; Correa, I. D.; Prakash, S. R.; Beck, K. D.; Moore, L. B.; Kliewer, S. A.; Lehmann, J. M., The structure-activity relationship between peroxisome proliferator-activated receptor ? agonism and the antihyperglycemic activity of thiazolidinediones. J Med Chem 1996, 39 (3), 665-668.
https://doi.org/10.1021/jm950395a
Chadha, N.; Bahia, M. S.; Kaur, M.; Silakari, O., Thiazolidine-2, 4-dione derivatives: Programmed chemical weapons for key protein targets of various pathological conditions. Bioorg Med Chem 2015, 23 (13) 2953-2974.
https://doi.org/10.1016/j.bmc.2015.03.071
Fujita, T.; Sugiyama, Y.; Taketomi, S.; Sohda, T.; Kawamatsu, Y.; Iwatsuka, H.; Suzuoki, Z., Reduction of insulin resistance in obese and/or diabetic animals by 5-[4-(1-methylcyclohexylmethoxy) benzyl]-thiazolidine-2, 4-dione (ADD-3878, U-63,287, ciglitazone), a new antidiabetic agent. Diabetes 1983, 32 (9), 804-810.
https://doi.org/10.2337/diab.32.9.804
Parulkar, A. A.; Pendergrass, M. L.; Granda-Ayala, R.; Lee, T. R.; Fonseca, V. A., Nonhypoglycemic effects of thiazolidinediones. Ann Intern Med 2001, 134 (1), 61-71.
https://doi.org/10.7326/0003-4819-134-1-200101020-00014
Azoulay, L.; Yin, H.; Filion, K. B.; Assayag, J.; Majdan, A.; Pollak, M. N.; Suissa, S., The use of pioglitazone and the risk of bladder cancer in people with type 2 diabetes: nested case-control study. BMJ 2012, 344, e3645.
https://doi.org/10.1136/bmj.e3645
Nissen, S. E.; Wolski, K., Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. New Eng J Med 2007, 356 (24), 2457-2471.
https://doi.org/10.1056/NEJMoa072761
Quianzon, C. C.; Cheikh, I. E., History of current non-insulin medications for diabetes mellitus. J Community Hosp Intern Med Perspec 2012, 2 (3).
https://doi.org/10.3402/jchimp.v2i3.19081
Azoulay, L.; Yin, H.; Filion, K. B.; Assayag, J.; Majdan, A.; Pollak, M. N.; Suissa, S., The use of pioglitazone and the risk of bladder cancer in people with type 2 diabetes: nested case-control study. BMJ 2012, 344.
https://doi.org/10.1136/bmj.e3645
Lincoff, A. M.; Wolski, K.; Nicholls, S. J.; Nissen, S. E., Pioglitazone and risk of cardiovascular events in patients with type 2 diabetes mellitus: a meta-analysis of randomized trials. JAMA 2007, 298 (10), 1180-1188.
https://doi.org/10.1001/jama.298.10.1180
Kim, J. W.; Kim, J.-R.; Yi, S.; Shin, K.-H.; Shin, H.-S.; Yoon, S. H.; Cho, J.-Y.; Kim, D.-H.; Shin, S.-G.; Jang, I.-J., Tolerability and pharmacokinetics of lobeglitazone (CKD-501), a peroxisome proliferator-activated receptor-? agonist: a single-and multiple-dose, double-blind, randomized control study in healthy male Korean subjects. Clin Ther 2011, 33 (11), 1819-1830.
https://doi.org/10.1016/j.clinthera.2011.09.023
Yasmin, S.; Jayaprakash, V., Design, In-Silico Docking And Predictive Adme Properties Of Some Thiazolidine-2, 4-Diones Derivatives As PPARG Modulators. Int J Pharm Pharm Sci 2016, 8 (5), 143-150.
Guasch, L.; Sala, E.; Castell-AuvÃ, A.; Cedó, L.; Liedl, K. R.; Wolber, G.; Muehlbacher, M.; Mulero, M.; Pinent, M.; Ardévol, A., Identification of PPARgamma partial agonists of natural origin (I): development of a virtual screening procedure and in vitro validation. PLoS One 2012, 7 (11), e50816.
https://doi.org/10.1371/journal.pone.0050816
Huang, N.; Shoichet, B. K.; Irwin, J. J., Benchmarking sets for molecular docking. J Med Chem 2006, 49 (23), 6789-6801.
https://doi.org/10.1021/jm0608356
Reddy, K. A.; Lohray, B.; Bhushan, V.; Bajji, A.; Reddy, K. V.; Reddy, P. R.; Krishna, T. H.; Rao, I. N.; Jajoo, H. K.; Rao, N. M., Novel antidiabetic and hypolipidemic agents. 3. Benzofuran-containing thiazolidinediones. J Med Chem 1999, 42 (11), 1927-1940.
https://doi.org/10.1021/jm980549x
Henke, B. R., Peroxisome proliferator-activated receptor a/? dual agonists for the treatment of type 2 diabetes. J Med Chem 2004, 47 (17), 4118-4127.
https://doi.org/10.1021/jm030631e
Tomkinson, N. C.; Sefler, A. M.; Plunket, K. D.; Blanchard, S. G.; Parks, D. J.; Willson, T. M., Solid-phase synthesis of hybrid thiazolidinedione-fatty acid PPAR? ligands. Bioorg Med Chem Lett 1997, 7 (19), 2491-2496.
https://doi.org/10.1016/S0960-894X(97)10017-8
Pearlman, D. A.; Charifson, P. S., Improved scoring of ligand-protein interactions using OWFEG free energy grids. J Med Chem 2001, 44 (4), 502-511.
https://doi.org/10.1021/jm000375v
Pettersen, E. F.; Goddard, T. D.; Huang, C. C.; Couch, G. S.; Greenblatt, D. M.; Meng, E. C.; Ferrin, T. E., UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 2004, 25 (13), 1605-1612.
https://doi.org/10.1002/jcc.20084
Schrödinger, L., Maestro 8.5 user manual. Schrödinger Press: 2008.
Pires, D. E.; Blundell, T. L.; Ascher, D. B., pkCSM: Predicting Small-Molecule Pharmacokinetic and Toxicity Properties Using Graph-Based Signatures. J Med Chem 2015, 58 (9), 4066-4072.
https://doi.org/10.1021/acs.jmedchem.5b00104
Laskowski, R. A.; Swindells, M. B., LigPlot+: multiple ligand–protein interaction diagrams for drug discovery. J Chem Inform Model 2011, 51 (10), 2778-2786.
https://doi.org/10.1021/ci200227u
Nolte, R. T.; Wisely, G. B.; Westin, S.; Cobb, J. E.; Lambert, M. H.; Kurokawa, R.; Rosenfeld, M. G.; Willson, T. M.; Glass, C. K.; Milburn, M. V., Ligand binding and co-activator assembly of the peroxisome proliferator-activated receptor-?. Nature 1998, 395 (6698), 137-143.
Lipinski, C. A., Lead-and drug-like compounds: the rule-of-five revolution. Drug Disc Today: Technologies 2004, 1 (4), 337-341.
https://doi.org/10.1016/j.ddtec.2004.11.007
Lipinski, C. A.; Lombardo, F.; Dominy, B. W.; Feeney, P. J., Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 2012, 64, 4-17.
https://doi.org/10.1016/j.addr.2012.09.019
Zhang, M.-Q.; Wilkinson, B., Drug discovery beyond the 'rule-of-five'. Curr Opin Biotechnol 2007, 18 (6), 478-488.
https://doi.org/10.1016/j.copbio.2007.10.005
Jorgensen, W. L.; Duffy, E. M., Prediction of drug solubility from structure. Adv Drug Deliv Rev 2002, 54 (3), 355-366.
https://doi.org/10.1016/S0169-409X(02)00008-X
Egan, W. J.; Zlokarnik, G.; Grootenhuis, P. D., In silico prediction of drug safety: despite progress there is abundant room for improvement. Drug Disc Today: Technologies 2004, 1 (4), 381-387.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.