Abstract
Schiff’s base of isonicotinyl hydrazide with 2’,4’-dihydroxy acetophenone (INH-RA) has been designed and synthesized as a part of library enumeration targeting the NS2B-NS3 protease of Dengue virus. Slow evaporation from methanol results in the formation of monoclinic crystals C2/c space group with eight molecules in the unit cell (a=20.0165(3) Å, b=7.7594(10) Å, c=19.4809(3) Å, α=90 °, β=111.368(1) °, γ=90 ° and Z=8). Three-dimensional X-ray crystallographic structure of the compound has been determined and refined using SHELXS-97 and SHELXL-2014, respectively to a final R-value of 4.64%Schiff’s base of isonicotinyl hydrazide with 2’,4’-dihydroxy acetophenone (INH-RA) has been designed and synthesized as a part of library enumeration targeting the NS2B-NS3 protease of Dengue virus. Slow evaporation from methanol results in the formation of monoclinic crystals C2/c space group with eight molecules in the unit cell (a=20.0165(3) Å, b=7.7594(10) Å, c=19.4809(3) Å, α=90 °, β=111.368(1) °, γ=90 ° and Z=8). Three-dimensional X-ray crystallographic structure of the compound has been determined and refined using SHELXS-97 and SHELXL-2014, respectively to a final R-value of 4.64%
References
Bernstein, J.; Lott, W. A.; Steinberg, B. A.; Yale, H. L. Chemotherapy of experimental tuberculosis. V. Isonicotinic acid hydrazide (nydrazid) and related compounds. American Review of Tuberculosis and Pulmonary Diseases 1952, 65 (4), 357-364.
Offe Hans, A.; Siefken, W.; Domagk, G. Hydrazinderivate und ihre Wirksamkeit gegenüber Mycobacterium tuberculosis. In Zeitschrift für Naturforschung B, 1952; Vol. 7, p 446.
Fox, H. H.; Gibas, J. T. Synthetic Tuberculostats. IV. Pyridine Carboxylic Acid Hydrazides and Benzoic Acid Hydrazides. The Journal of Organic Chemistry 1952, 17 (12), 1653-1660.
https://doi.org/10.1021/jo50012a013
Krishna Murti, C. R. Isonicotinic Acid Hydrazide. In Mechanism of Action of Antimicrobial and Antitumor Agents, Corcoran, J. W.; Hahn, F. E.; Snell, J. F.; Arora, K. L., Eds. Springer Berlin Heidelberg: Berlin, Heidelberg, 1975, 10.1007/978-3-642-46304-4_43pp 623-652.
Hearn, M. J.; Cynamon, M. H. Design and synthesis of antituberculars: preparation and evaluation against Mycobacterium tuberculosis of an isoniazid Schiff base. Journal of Antimicrobial Chemotherapy 2004, 53 (2), 185-191.
https://doi.org/10.1093/jac/dkh041
Thomas, A. B.; Tupe, P. N.; Badhe, R. V.; Nanda, R. K.; Kothapalli, L. P.; Paradkar, O. D.; Sharma, P. A.; Deshpande, A. D. Green route synthesis of Schiff's bases of isonicotinic acid hydrazide. Green Chemistry Letters and Reviews 2009, 2 (1), 23-27.
https://doi.org/10.1080/17518250902922798
Chohan, Z. H.; Arif, M.; Shafiq, Z.; Yaqub, M.; Supuran, C. T. In vitro antibacterial, antifungal & cytotoxic activity of some isonicotinoylhydrazide Schiff's bases and their cobalt (II), copper (II), nickel (II) and zinc (II) complexes. Journal of Enzyme Inhibition and Medicinal Chemistry 2006, 21 (1), 95-103.
https://doi.org/10.1080/14756360500456806
Hearn, M. J.; Cynamon, M. H.; Chen, M. F.; Coppins, R.; Davis, J.; Joo-On Kang, H.; Noble, A.; Tu-Sekine, B.; Terrot, M. S.; Trombino, D.; Thai, M.; Webster, E. R.; Wilson, R. Preparation and antitubercular activities in vitro and in vivo of novel Schiff bases of isoniazid. European Journal of Medicinal Chemistry 2009, 44 (10), 4169-4178.
https://doi.org/10.1016/j.ejmech.2009.05.009
Ferraresi-Curotto, V.; Echeverría, G. A.; Piro, O. E.; Pis-Diez, R.; González-Baró, A. C. Synthesis and characterization of a series of isoniazid hydrazones. Spectroscopic and theoretical study. Journal of Molecular Structure2017,1133, 436-447.
https://doi.org/10.1016/j.molstruc.2016.12.018
Aboul-Fadl, T.; Mohammed, F. A.-H.; Hassan, E. A.-S. Synthesis, antitubercular activity and pharmacokinetic studies of some schiff bases derived from 1- alkylisatin and isonicotinic acid hydrazide (inh). Archives of Pharmacal Research 2003, 26 (10), 778-784.
https://doi.org/10.1007/BF02980020
Sheldrick, G. A short history of SHELX. Acta Crystallographica Section A 2008, 64 (1), 112-122.
https://doi.org/10.1107/S0108767307043930
Sheldrick, G. Crystal structure refinement with SHELXL. Acta Crystallographica Section C 2015, 71 (1), 3-8.
https://doi.org/10.1107/S2053229614024218
Bruker, A. APEX2, V2008. 6, SADABS V2008/1, SAINT V7. 60A, SHELXTL V6. 14. Bruker AXS Inc., Madison, Wisconsin, USA: 2008.
Nardelli, M. PARST95 - an update to PARST: a system of Fortran routines for calculating molecular structure parameters from the results of crystal structure analyses. Journal of Applied Crystallography 1995, 28 (5), 659.
https://doi.org/10.1107/S0021889895007138
Nardelli, M. Parst: A system of fortran routines for calculating molecular structure parameters from results of crystal structure analyses. Computers & Chemistry 1983, 7 (3), 95-98.
https://doi.org/10.1016/0097-8485(83)85001-3
Farrugia, L. WinGX and ORTEP for Windows: an update. Journal of Applied Crystallography 2012, 45 (4), 849-854.
https://doi.org/10.1107/S0021889812029111
Spek, A. Structure validation in chemical crystallography. Acta Crystalogr D 2009, 65 (2), 148-155.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright (c) 2019 JOURNAL OF PHARMACEUTICAL CHEMISTRY