Monoamine oxidase-A inhibitory activity of novel Curcumin analogues
PDF

Keywords

Curcumin analogue
hMAO inhibitors
Caco-2 permeability
Human liver microsomal metabolic stability

How to Cite

(1)
Badavath, V. N.; Baysal, ?pek; Ucar, G.; Sinha, B. N.; Mondal, S. K.; Jayaprakash, V. Monoamine Oxidase-A Inhibitory Activity of Novel Curcumin Analogues. J Pharm Chem 2015, 2 (3-4), 12-17. https://doi.org/10.14805/jphchem.2015.art46.

Abstract

Curcumin has been known for its antidepressant activity, but its use has been restricted due to its poor pharmacokinetic properties. In an effort to enhance its permeability and metabolic stability, a series of four novel curcumin analogues (5a-5d) were synthesized. They were tested for their hMAO inhibitory activity as well as for their permeability and metabolic stability characteristics in in vitro models. The newly synthesized compounds were found to be potent when compared with curcumin and also they are selective and reversible towards hMAO-A. Compounds 5c and 5d were found to be potent inhibitors of hMAO-A with Ki values of Ki=0.110.01M and Ki=0.060.002 M and with selectivity index of SIMAO-A=802.36 and SIMAO-A=507.33, respectively. A slight enhancement in metabolic stability is achieved through the chemical modification.
PDF

References

Maheshwari, R. K.; Singh, A. K.; Gaddipati, J.; Srimal, R. C., Multiple biological activities of curcumin: a short review. Life Sci 2006, 78, 2081-2087. http://dx.doi.org/10.1016/j.lfs.2005.12.007

Goel, A; Kunnumakkara, A. B.; Aggarwal, B. B., Curcumin as ''Curecumin'': From kitchen to clinic. Biochem Pharmacol 2008, 75, 787-809. http://dx.doi.org/10.1016/j.bcp.2007.08.016

Aggarwal, B. B.; Kuzhuveli, B. H., Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases. Int J Biochem Cell Biol 2009, 41, 40-59. http://dx.doi.org/10.1016/j.biocel.2008.06.010

Ali, N.; Ashkani-Esfahani, S., A Review of Therapeutic Effects of Curcumin. Curr Pharm Des 2013, 19, 2032-2046. http://dx.doi.org/10.2174/1381612811319110006

Dulbecco, P.; Savarino, V., Therapeutic potential of curcumin in digestive diseases. World J Gastroenterol 2013, 19, 9256-70. http://dx.doi.org/10.3748/wjg.v19.i48.9256

Lestari, M. L. A. D.; Gunawan, I., Curcumin. Profiles of Drug Substances, Excipients, and Related Methodology 2014, 39, 113-204. http://dx.doi.org/10.1016/B978-0-12-800173-8.00003-9

Xu, Y.; Ku, B.S.; Yao, H.Y.; Lin, Y.H.; Ma, X.; Zhang, Y.H.; Li, X.J., The effects of curcumin on depressive-like behaviors in mice. Eur J Pharmacol 2005, 518, 4046. http://dx.doi.org/10.1016/j.ejphar.2005.06.002

Xu, Y.; Ku, B.S.; Yao, H.Y.; Lin, Y.H.; Ma, X.; Zhang, Y.H.; Li, X.J., Antidepressant effects of curcumin in the forced swim test and olfactory bulbectomy models of depression in rats. Pharmacol Biochem Behav 2005, 82, 200-206. http://dx.doi.org/10.1016/j.pbb.2005.08.009

Wang, R.; Xu, Y.; Wu, H.L.; Li, Y.B.; Li, Y.H.; Guo, J.B.; Li, X. J., The antidepressant effects of curcumin in the forced swimming test involve 5-HT1 and 5-HT2 receptors, Eur J Pharmacol 578 (2008) 4350. http://dx.doi.org/10.1016/j.ejphar.2007.08.045

Kulkarni, S.K.; Bhutani, M.K.; Bishnoi, M., Antidepressant activity of curcumin: Involvement of serotonin and dopamine system. Psychopharmacol 2008, 201, 435442. http://dx.doi.org/10.1007/s00213-008-1300-y

Xu, Y.; Ku, B.; Lu, T.; Yao, H.; Jiang, W.; Ma, X.; Li, X., Curcumin reverses the effects of chronic stress on behavior, the HPA axis, BDNF expression and phosphorylation of CREB. Brain Res 2006, 1122, 56-64. http://dx.doi.org/10.1016/j.brainres.2006.09.009

Xu, Y.; Ku, B.; Cui, L.; Li, X.; Barish, P. A.; Foster, T. C.; Ogle, W. O., Curcumin reverses impaired hippocampal neurogenesis and increases serotonin receptor 1A mRNA and brain-derived neurotropic factor expression in chronically stressed rats. Brain Res 2007, 1162, 9-18. http://dx.doi.org/10.1016/j.brainres.2007.05.071

Kulkarni, S. K.; Dhir, A.; Akula, K. K., Potentials of Curcumin as an Antidepressant. Sci World J 2009, 9, 1233-1241. http://dx.doi.org/10.1100/tsw.2009.137

Gradowski, R. W.; Santiago, R. M.; Zaminelli, T.; Bassani, T. B.; Barbiero, J. K.; Boschen, S. L.; Andreatini, R.; Vital, M. A. B. F., Antidepressant-like effect of curcumin in 6-hydroxydopamine model of Parkinson's disease. Curr Trends Neurol 2013, 7, 69-80.

Jiang, H.; Wang, Z.; Wang, Y.; Xie, K.; Zhang, Q.; Luan, Q.; Chen, W.; Liu, D., Antidepressant-like effects of curcumin in chronic mild stress of rats: Involvement of its anti-inflammatory action. Prog Neuro-Psychopharmacol Biol Psychiatry 2013, 47, 33-39. http://dx.doi.org/10.1016/j.pnpbp.2013.07.009

Witkin, J. M.; Leucke, S.; Thompson, L. K.; Lynch, R. A.; Ding, C.; Heinz, B.; Catlow, J. T.; Gleason, S. D.; Li, X., Further evaluation of the neuropharmacological determinants of the antidepressant-like effects of curcumin. CNS Neurol Disord Drug Targets 2013, 12, 498-505. http://dx.doi.org/10.2174/1871527311312040008

Zhang, L.; Xu, T.; Wang, S.; Yu, L.; Liu, D.; Zhan, R.; Yu, S. Y., NMDA GluN2B receptors involved in the antidepressant effects of curcumin in the forced swim test. Prog Neuro-Psychopharmacol Biol Psychiatry 2013, 40, 12-17. http://dx.doi.org/10.1016/j.pnpbp.2012.08.017

Zhao, X.; Wang, C.; Zhang, J.-F.; Liu, L.; Liu, A.-M.; Ma, Q.; Zhou, W.-H.; Xu, Y., Chronic curcumin treatment normalizes depression-like behaviors in mice with mononeuropathy: involvement of supraspinal serotonergic system and GABAA receptor. Psychopharmacol 2014, 231, 2171-2187. http://dx.doi.org/10.1007/s00213-013-3368-2

Anand, P.; Kunnumakkara, A. B.; Newman, R. A.; Aggarwal, B. B., Bioavailability of Curcumin: Problems and Promises. Mol Pharmaceutics 2007, 4, 807-818. http://dx.doi.org/10.1021/mp700113r

Berginc, K.; Trontelj, J.; Basnet, N. S.; Kristl, A., Physiological barriers to the oral delivery of curcumin. Pharmazie 2012, 67, 518-524.

Begum, A. N.; Jones, M. R.; Lim, G. P.; Morihara, T.; Kim, P.; Heath, D. D.; Rock, C. L.; Pruitt, M. A.; Yang, F.; Hudspeth, B.; Hu, S.; Faull, K. F.; Teter, B.; Cole, G. M.; Frautschy, S. A., Curcumin structure-function, bioavailability, and efficacy in models of neuroinflammation and Alzheimer's disease. J Pharmacol Exp Ther 2008, 326, 196-208. http://dx.doi.org/10.1124/jpet.108.137455

Wang, Q.; Wang, K., Metabolism of curcumin. Zhongguo Yaolixue Tongbao 2003, 19, 1097-1101.

Metzler, M.; Pfeiffer, E.; Schulz, S. I.; Dempe, J. S., Curcumin uptake and metabolism. Biofactors 2013, 39, 14-20. http://dx.doi.org/10.1002/biof.1042

Yallapu, M. M.; Jaggi, M.; Chauhan, S. C., Curcumin nanoformulations: a future nanomedicine for cancer. Drug Disc Today 2012, 17, 71-80. http://dx.doi.org/10.1016/j.drudis.2011.09.009

Dagar, P.; Dahiya, P.; Bhambi, M., Recent advances in curcumin nanoformulations. Nano Sci Nano Technol Indian J 2014, 8, 458-474.

Prasad, S.; Tyagi, A. K.; Aggarwal, B. B., Recent Developments in Delivery, Bioavailability, Absorption and Metabolism of Curcumin : the Golden Pigment from Golden Spice. Cancer Res and Treat 2014, 46, 2-18. http://dx.doi.org/10.4143/crt.2014.46.1.2

Singh, P. K.; Wani, K.; Kaul-Ghanekar, R.; Prabhune, A.; Ogale, S., From micron to nano-curcumin by sophorolipid co-processing: highly enhanced bioavailability, fluorescence, and anti-cancer efficacy. RSC Adv 2014, 4, 60334-60341. http://dx.doi.org/10.1039/C4RA07300B

Tian, F.; Hu, J., Pharmacokinetic features of curcumin and research progress in the drug form modification. Yaoxue Fuwu Yu Yanjiu 2014, 14, 458-461.

Vyas, A.; Dandawate, P.; Padhye, S.; Ahmad, A.; Sarkar, F., Perspectives on New Synthetic Curcumin Analogs and their Potential Anticancer Properties. Curr Pharm Des 2013, 19, 2047-2069. http://dx.doi.org/10.2174/1381612811319110007

Chakraborti, S.; Dhar, G.; Dwivedi, V.; Das, A.; Poddar, A.; Chakraborti, G.; Basu, G.; Chakrabarti, P.; Surolia, A.; Bhattacharyya, B., Stable and Potent Analogues Derived from the Modification of the Dicarbonyl Moiety of Curcumin. Biochemistry 2013, 52, 7449-7460. http://dx.doi.org/10.1021/bi400734e

Lin, L.; Shi, Q.; Nyarko, A. K.; Bastow, K. F.; Wu, C. C.; Su, C. Y.; Shih, C. C. Y.; Lee, K. H., Antitumor Agents. 250.Design and Synthesis of New Curcumin Analogues as Potential Anti-Prostate Cancer Agents. J Med Chem 2006, 49, 3963-3972. http://dx.doi.org/10.1021/jm051043z

Banerjee, S.; Chakravarty, A. R., Metal Complexes of Curcumin for Cellular Imaging, Targeting, and Photoinduced Anticancer Activity. Acc Chem Res 2015, 48, 2075-2083. http://dx.doi.org/10.1021/acs.accounts.5b00127

Chen, Q. H. Preparation of curcumin analogs for the treatment of prostate cancer. US20150017720A1, 2015.

Xia, C. N.; Li, H. B.; Liu, F.; Hu, W. X., Synthesis of trans-caffeate analogues and their bioactivities against HIV-1 integrase and cancer cell lines. Bioorg Med Chem Lett 2008, 18, 6553-6557. http://dx.doi.org/10.1016/j.bmcl.2008.10.046

Galey, J. B.; Terranova, E. Mono- and di-esters of cinnamic acid or its derivatives with vitamin C, process for their preparation, and their use as antioxidants in cosmetic, pharmaceutical, or alimentary compositions. EP664290A1, 1995.

Ergun, B. C.; Coban, T.; Onurdag, F. K.; Banoglu, E., Synthesis, antioxidant and antimicrobial evaluation of simple aromatic esters of ferulic acid. Arch Pharmacal Res 2011, 34, 1251-1261. http://dx.doi.org/10.1007/s12272-011-0803-y

Nomura, E.; Kashiwada, A.; Hosoda, A.; Nakamura, K.; Morishita, H.; Tsuno, T.; Taniguchi, H., Synthesis of amide compounds of ferulic acid, and their stimulatory effects on insulin secretion in vitro. Bioorg Med Chem 2003, 11, 3807-3813. http://dx.doi.org/10.1016/S0968-0896(03)00280-3

Yanez, M.; Fraiz, N.; Cano, E.; Orallo, F., Inhibitory effects of cis-and trans-resveratrol on noradrenaline and 5-hydroxytryptamine uptake and on monoamine oxidase activity. Biochem Biophys Res Commun 2006, 344, 688-695.

Chimenti, F.; Maccioni, E.; Secci, D.; Bolasco, A.; Chimenti, P.; Granese, A.; Carradori, S.; Alcaro, S.; Ortuso, F.; Y-ez, M., Synthesis, stereochemical identification, and selective inhibitory activity against human monoamine oxidase-B of 2-methylcyclohexylidene-(4-arylthiazol-2-yl) hydrazones. J Med Chem 2008, 51, 4874-4880. http://dx.doi.org/10.1021/jm800132g

Badavath, V. N.; Yabanoglu, S. C.; Bhakat, S.; Timiri, A. K. T.; Sinha,B. N.; Ucar, G.; Soliman, M. E. S.; Jayaprakash, V., Monoamine oxidase inhibitory activity of 2-aryl-4H-chromen-4-ones. Bioorg Chem 2015, 58, 7280. http://dx.doi.org/10.1016/j.bioorg.2014.11.008

Badavath, V. N.; Yabanoglu, S. C.; Bhakat, S.; Jadav, S. S.; Jagarat, M.; Sinha, B. N. ; Ucar, G.; Jayaprakash, V., Monoamine oxidase inhibitory activity of 3, 5-biaryl-4,5-dihydro-1Hpyrazole-1-carboxylate derivatives. Eur J Med Chem 2013, 69, 762-767 http://dx.doi.org/10.1016/j.ejmech.2013.09.010

Badavath, V. N.; Alok, K.; Jadav, S. S.; Mishra, N.; Dev, A.; Sinha, B. N.; Jayaprakash, V., Pyrazoline carboxylates as selective MAO-B inhibitors: Synthesis and Biological screening. J Pharm Chem 2015, 2, 1?5. http://dx.doi.org/10.14805/jphchem.2015.art35

Hitzel, L.; Watt, A.; Locker, K., An Increased Throughput Method for the Determination of Partition Coefficients. Pharm Res 2000, 17, 1389-1395. http://dx.doi.org/10.1023/A:1007546905874

Kerns, E. H.; Di, L.; Petusky, S.; Farris, M.; Ley, R.; Jupp, P., Combined application of parallel artificial membrane permeability assay and Caco-2 permeability assays in drug discovery. J Pharm Sci 2004, 93, 1440-1453. http://dx.doi.org/10.1002/jps.20075

Balimane, P.; Han, Y.-H.; Chong, S., Current industrial practices of assessing permeability and P-glycoprotein interaction. AAPS J 2006, 8, E1-E13. http://dx.doi.org/10.1208/aapsj080101

Di, L.; Kerns, E. H.; Hong, Y.; Kleintop, T. A.; Mc Connell, O. J.; Huryn, D. M., Optimization of a Higher Throughput Microsomal Stability Screening Assay for Profiling Drug Discovery Candidates. J Biomol Screen 2003, 8, 453-462. http://dx.doi.org/10.1177/1087057103255988

Jenkins, K. M.; Angeles, R.; Quintos, M. T.; Xu, R.; Kassel, D. B.; Rourick, R. A., Automated high throughput ADME assays for metabolic stability and cytochrome P450 inhibition profiling of combinatorial libraries. J Pharm Biomed Anal 2004, 34, 989-1004. http://dx.doi.org/10.1016/j.jpba.2003.08.001

Bradford, M. M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976, 72, 248-254. http://dx.doi.org/10.1016/0003-2697(76)90527-3

Chimenti, F.; Carradori, S.; Secci, D.; Bolasco, A.; Bizzarri, B.; Chimenti, P.; Granese, A.; Y-ez, M.; Orallo, F., Synthesis and inhibitory activity against human monoamine oxidase of N1-thiocarbamoyl-3, 5-di (hetero) aryl-4, 5-dihydro-(1H)-pyrazole derivatives. Eur J Med Chem 2010, 45, 800-804. http://dx.doi.org/10.1016/j.ejmech.2009.11.003

Mondal, S. K.; Upal, K. Mazumder.; Mondal, N. B.; Banerjee, S Mazumder., Optimization of rat liver microsomal stability assay using HPLC. J Biol Sci 2008, 8, 1110-1114. http://dx.doi.org/10.3923/jbs.2008.1110.1114

Mondal, S. K.; Mondal, N. B.; Banerjee, S Mazumder.; Upal, K. Mazumder., Determination of drug-like properties of a novel antileishmanial compound: In vitro absorption, distribution, metabolism, and excretion studies. Indian J Pharmacol 2009, 41,176-81. http://dx.doi.org/10.4103/0253-7613.56075

Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.