Abstract
The research of ligand-protein interactions with in silico molecular modeling studies on the atomic level gives an opportunity to be understood the pharmacokinetic metabolism of anti-depressant drug candidates. Monoamine oxidase (MAO) enzymes are important targets for the treatment of depressive disorder. MAOs have two isoforms as MAO-A and MAO-B being responsible for catalyzing of neurological amines. In this study a new series of coumarin derivatives were designed for selective and reversible inhibition of MAO-A enzyme. 3rd, 5th and 7th positions were selected to be placed of five different side groups. Docking procedures of each ligand in M series of these novel 125 compounds were executed with 10 runs by using AutoDock4.2 software. Docking results were analyzed via Discovery Studio 3.1 (Biovia Inc.). The most promising compounds were M118 and M123 according to selectivity index, SI (MAO-B/MAO-A)=180 fold and 209 fold and Ki values 7.25 nM and 12.01 nM, respectively. Overall, the current study provided significant knowledge for the development of new anti-depressant drugs.
References
References
Bach, A. W.; Lan, N. C.; Johnson, D. L.; Abell, C. W.; Bembenek, M. E.; Kwan, S. W.; Seeburg, P. H.; Shih, J. C., cDNA cloning of human liver monoamine oxidase A and B: Molecular basis of differences in enzymatic properties. Proc Natl Acad Sci 1988, 85, 4934-38.
https://doi.org/10.1073/pnas.85.13.4934
Shih, J.; Chen, K.; Ridd, M.J. Monoamine oxidase: From genes to behavior. Annu Rev Neurosci 1999, 22, 197-217.
https://doi.org/10.1146/annurev.neuro.22.1.197
Geha, R. M.; Rebrin, I.; Chen, K.; Shih, J. C., Substrate and Inhibitor Specificities for Human Monoamine Oxidase A and B Are Influenced by a Single Amino Acid. J Bio Chem 2001, 276, 9877-82.
https://doi.org/10.1074/jbc.M006972200
Rodríguez, M. J.; Saura, J.; Billet, E. E.; Finch, Ch. C.; Mahy, N., Cellular localization of monoamine oxidase. A and B in human tissues outside of central nervous system. Cell Tissue Res 2001, 304, 215-220.
https://doi.org/10.1007/s004410100361
Kawai, Y.; Kunitomo, J.; Ohno, A., Atropisomeric Flavoenzyme Models with a Modified Pyrimidine. Kyoto: ICR Annual Report 3, 1996
Youdim, M. B. H.; Edmondson, D.; Tipton, K. F., The therapeutic potential of monoamine oxidase inhibitors. Nat Rev Neurosci 2006, 7, 295-309.
https://doi.org/10.1038/nrn1883
Helguera, A. M.; Garrido, A. P.; Gaspar, A.; Reis, J.; Cogide, F.; Vina, D.; Borges, F.; Corderio, M. N. D. S., Combining QSAR Classification Models for Predictive modeling of Human Monoamine Oxidase Inhibitors. Eur J Med Chem 2013, 59, 75-90.
https://doi.org/10.1016/j.ejmech.2012.10.035
Knudsen-Gerber, D. S., Selegeline and Rasageline: Twins or Distant Cousins? Guidelines. Consult Pharm 2011, 26, 48-51.
https://doi.org/10.4140/TCP.n.2011.48
Kaludercic, N.; Carpi, A.; Menabò, R.; Lisa, F. D.; Paolocci, N. Monoamine Oxidases (MAO) in the Pathogenesis of Heart Failure and Ischemia/Reperfusion Injury. Biochim Biophys Acta (BBA) - Mol Cell Res 2011, 1813, 1323-32.
https://doi.org/10.1016/j.bbamcr.2010.09.010
Matos, M. J.; Viña, D.; Quezada, E.; Picciau, C.; Delogu, G.; Orallo, F.; Santana, L.; Uriarte, E., A New Series of 3-phenylcoumarins as potent and Selective MAO-B Inhibitors. Bioorg Med Chem Lett 2009, 19, 3268-70.
https://doi.org/10.1016/j.bmcl.2009.04.085
Abdelhafez, O. M.; Amin, K. A.; Ali, H. I., Abdall, M. M., Batran, R. Z., Monoamine Oxidase A and B Inhibiting Effect and Molecular Modeling of Some Synthesized Coumarin Derivatives. Neurochem Int 2013, 62, 198-209.
https://doi.org/10.1016/j.neuint.2012.11.005
Matos, M. J.; Santana, L.; Janeiro, P.; Qezada, E.; Uriarte, E.; Gonzalez-Diaz, H.; Viña, D.; Oralla, F., Design, Synthesis and Pharmacological Evalution of New Coumarin Derivatives as Monoamine Oxidase A and B Inhibitors. 12th Int Elect Conf on Synt Org Chem (ECSOC-12) 2008.
https://doi.org/10.3390/ecsoc-12-01239
Matos, M. J.; Viña, D.; Picciau, C.; Orallo, F.; Santana, L.; Uriarte, E., Synthesis and Evaluation of 6-methyl-3-phenylcoumarins as Potent and Selective MAO-B Inhibitors; Bioorg & Med Chem Lett 2009, 19, 5053-55.
https://doi.org/10.1016/j.bmcl.2009.07.039
Santana, L.; González-Díaz, H.; Quezada, E.; Uriarte, E.; Yáñez, M.; Viña, D.; Orallo, F., Quantative Structure-Activity Relationship and Complex Network Approach to Monoamine Oxidase A and B Inhibitors. J Med Chem 2008, 51, 6740-51.
https://doi.org/10.1021/jm800656v
Matos, M. J.; Teran, C.; Perez-Castillo, Y.; Uriarte, E.; Santana, L.; Viña, D., Synthesis and Study of A Series of 3-arylcoumarins as Potent and Selective Monoamine Oxidase B Inhibitor. J Med Chem 2011, 54, 7127-37.
https://doi.org/10.1021/jm200716y
Iranshahi, M.; Askari, M.; Sahebkar, A.; Hadjipavlou-Litina, D., Evaluation of Antioxidant, Anti-inflammatory and Lipoxygenase Inhibitory Activities of the Prenylated Coumarin Umbelliprenin. DARU, 2009, 17, 99-103.
Goodman & Gilman's. The Pharmacological basis of therapeutics: Blood coagulation and Anticoagulant, thrombolytic and Anti-platelet drugs. 11th ed. 2006, 1325-1328.
Bolakatti, G. S.; Maddi, V. S.; Mamledesai, S. N.; Ronad, P. M.; Palkar, M. B.; Swamy, S., Synthesis and evaluation of anti-inflammatory and analgesic activities of a novel series of coumarin mannich bases. Arzneim-Forsch/Drug Res 2008, 58, 515-520.
https://doi.org/10.1055/s-0031-1296551
Myers, R. B.; Parker, M.; Grizzle, W. E., The effects of coumarin and suramin on the growth of malignant renal and prostatic cell lines. J Cancer Res Clin Oncol 1994, 120, 11-13
https://doi.org/10.1007/BF01377115
Mishra, S.; Pandey, A.; Manvati, S., Coumarin: An emerging antiviral agent. Heliyon, 2020, 6, 1-7.
https://doi.org/10.1016/j.heliyon.2020.e03217
Dexeus, F. H.; Logothetis, C. J.; Sella, A.; Fitz, K.; Amato, R.; Reuben, J. M., Design & synthesis of some novel substituted coumarin & evaluated for anti-convulsant activity. J Clin Oncol. 1990, 8, 314-325.
https://doi.org/10.1200/JCO.1990.8.2.325
Čačić, M.; Pavić, V.; Molnar, M.; Šarkanj, B.; Has-Schön, E., Design and Synthesis of Some New 1,3,4-Thiadiazines with Coumarin Moieties and Their Antioxidative and Antifungal Activity. Molecules 2014, 19, 1163-77.
https://doi.org/10.3390/molecules19011163
Alipour, M.; Khoobi, M.; Emami, S.; Fallah-Benakohal, S.; Ghasemi-Niri, S. F.; Abdollahi, M.; Foroumadi, A.; Shafiee, A., Antinociceptive Properties of New Coumarin Derivatives Bearing Substituted 3,4-dihydro-2H-benzothiazines. Daru 2014, 22, 9.
https://doi.org/10.1186/2008-2231-22-9
Morris, G. M.; Goodsell, D. S.; Halliday, R.S.; Huey, R.; Hart, W. E.; Belew, R. K.; Olson, A. J., Automated Docking Using a Lamarckian Genetic Algorithm and and Empirical Binding Free Energy Function. J Comput Chem 1998, 19, 1639-62.
https://doi.org/10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B
Huey, R.; Morris, G. M.; Olson, A. J.; Goodsell, D. S. A., Semiempirical Free Energy Force Field with Charge-Based Desolvation. J Comput Chem 2007, 28, 1145-1652.
https://doi.org/10.1002/jcc.20634
Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. Autodock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comput Chem 2009, 30, 2785-91.
https://doi.org/10.1002/jcc.21256
Dassault Systèmes BIOVIA, Discovery Studio, 3.1, San Diego: Dassault Systèmes, 2014.
Toprakçı, M.; Yelekçi K., Docking Studies on Monoamine Oxidase-B Inhibitors: Estimation of Inhibition Constants (Ki) of a Series of Experimentally Tested Compounds. Bioorg Med Chem Lett 2005, 15, 4438-4446.
https://doi.org/10.1016/j.bmcl.2005.07.043
Gökhan-Kelekçi, N.; Şimşek, Ö.Ö.; Ercan, A.; Yelekçi, K.; Şahin, Z. S.; Işık, Ş.; Uçar, G.; Bilgin, A. A., Synthesis and molecular modeling of some novel hexahydroindazole derivatives as potent monoamine oxidase inhibitors. Bioorg Med Chem 2009, 17, 6761-72.
https://doi.org/10.1016/j.bmc.2009.07.033
Yelekçi, K.; Büyüktürk, B.; Kayrak, N. In silico identification of novel and selective monoamine oxidase B inhibitors. J Neural Transm 2013, 120, 853-858.
https://doi.org/10.1007/s00702-012-0954-0
Goksen, U. S.; Sarigul, S.; Bultinck, P.; Herrebout, W.; Dogan I.; Yelekci K.; Ucar G.; Gokhan-Kelekci N., Absolute configuration and biological profile of pyrazoline enantiomers as MAO inhibitory activity. Chirality 2019, 31, 21- 33.
https://doi.org/10.1002/chir.23027
Turkmenoglu F. P.; Baysal İ.; Ciftci-Yabanoglu, S.; Yelekci, K.; Temel, H.; Paşa, S.; Ezer, N.; Çalış, İ.; Ucar, G., Flavonoids from Sideritis Species: Human Monoamine Oxidase (hMAO) Inhibitory Activities, Molecular Docking Studies and Crystal Structure of Xanthomicrol. Molecules 2015, 20, 7454-73
https://doi.org/10.3390/molecules20057454
Kumar, A.; Jain, S.; Parle, M.; Jain, N.; Kumar, P., 3-Aryl-1-Phenyl-1H-Pyrazole Derivatives as New Multitarget Directed Ligands for the Treatment of Alzheimer's Disease, with Acetylcholinesterase and Monoamine Oxidase Inhibitory Properties. EXCLI J 2013, 12, 1030-42
Binda, C.; Wang, J.; Pisani, L.; Caccia, C.; Carotti, A.; Salvati, P.; Edmonson, D. E.; Mattevi, A., Structures of Human Monoamine Oxydase B Complexes with Selective Noncovalent Inhibitors: Safinamide and Coumarin Analogs. J Med Chem 2007, 50, 5848-52
https://doi.org/10.1021/jm070677y
Son, S.Y.; Ma, J.; Yoshimura, M.; Tsukihara, T., Crystal Structure of Human Monoamine Oxidase A with Harmine. Proc Natl Acad Sci U S A 2008, 105, 5739-5744
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright (c) 2020 JOURNAL OF PHARMACEUTICAL CHEMISTRY