Docking studies of 3,5-disubstituted thiazolidinedione chalcones as PPAR-γ agonist
PDF

Keywords

AutoDock 4.2
Docking
PPAR-γ
Thiazolidinedione chalcones

How to Cite

(1)
Fathima, F.; Haridas, A.; Lakshmanan, B. Docking Studies of 3,5-Disubstituted Thiazolidinedione Chalcones As PPAR-γ Agonist. J Pharm Chem 2016, 3 (3), 19-23. https://doi.org/10.14805/jphchem.2016.art64.

Abstract

PPARs play crucial role in the regulation of cellular differentiation, development and metabolism of carbohydrates, lipids and proteins in human, of which PPAR- ? has pivotal role in glucose homeostasis. In modern drug designing, molecular docking is routinely used for understanding drug receptor interaction. In the present study molecular docking were performed on a diverse set of 3,5-disubstituted thiazolidinedione chalcone derivatives that demonstrate antidiabetic activity by stimulating PPAR- ?. Among the designed analogues, e3, a3, b3 and c3 showed significant binding free energy of -12.29, -12.04, -11.53 and -11.45 kcal/mol with predicted inhibitory constant values of 987.38 pM, 1.5, 3.53 and 4.04 nM respectively and all the selected compounds were compared with standard drug Rosiglitazone.
PDF

References

WHO, Diabetes, Fact sheet. Reviewed on June 2016. who.int/mediacentre/factsheets/fs312/en/.

Le Roith, D. Beta-cell dysfunction and insulin resistance in type 2 diabetes: role of metabolic and genetic abnormalities. Am J Med 2002,113, 3-11.

http://dx.doi.org/10.1016/S0002-9343(02)01276-7

Gerich J. E. The genetic basis of type 2 diabetes mellitus: impaired insulin secretion versus impaired insulin sensitivity. Endocr Rev 1998, 19, 491-503.

http://dx.doi.org/10.1210/edrv.19.4.0338

Gloyn A. The search for type 2 diabetes genes; Ageing Res Rev 2003, 2, 111-127.

http://dx.doi.org/10.1016/S1568-1637(02)00061-2

Anjana R. M., Pradeepa R., Deepa M. ICMR-INDIAB Collaborative Study Group: prevalence of diabetes and prediabetes (impaired fasting glucose or/and impaired glucose tolerance) in rural and urban India: phase 1 results of the Indian Council of Medical Research- INdiaDIABetes (INDIAB) study. Diabetologia 2011; 54, (12), 3022-3027.

http://dx.doi.org/10.1007/s00125-011-2291-5

Hauner, H. The mode of action of thiazolidinediones. Diabetes Metab Res Rev 2002, 18, (2), S10-S15.

http://dx.doi.org/10.1002/dmrr.249

Lehmann, J. M., Moore, L. B., Smith-Oliver, T. A., Wilkison, W. O.; Willson, T. M.; Kliewer, S. A., An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor gamma (PPAR gamma). J BiolChem 1995, 270, (22), 12953-12956.

http://dx.doi.org/10.1074/jbc.270.22.12953

Belfort, R.; Harrison, S. A.; Brown, K.; Darland, C.; Finch, J.; Hardies, J.; Balas, B.; Gastaldelli, A.; Tio, F.; Pulcini, J.; Berria, R.; Ma, J. Z.; Dwivedi, S.; Havranek, R.; Fincke, C.; DeFronzo, R.; Bannayan, G. A.; Schenker, S.; Cusi, K., A placebo-controlled trial of pioglitazone in subjects with nonalcoholic steatohepatitis. New Engl J Med 2006, 355, (22), 2297-2307.

http://dx.doi.org/10.1056/NEJMoa060326

Krentz, A. J.; Friedmann, P. S., Type 2 diabetes, psoriasis and thiazolidinediones. Int J Clin Pract. 2006, 60, (3), 362-363.

http://dx.doi.org/10.1111/j.1368-5031.2005.00765.x

Wagner, R. L., Apriletti, J. W., McGrath, M. E., West, B. K., Baxter, J. D., Fletterick, R. J. A structural role for hormone in the thyroid hormone receptor. Nature 1995, (378), 690–697.

http://dx.doi.org/10.1038/378690a0

Renaud, J.-P., Rochel, N., Ruff, M., Vivat, V, Chambon, P., Gronemeyer, H., Moras, D. Crystal structure of the RAR-γ ligand-binding domain bound to all-trans retinoic acid. Nature 1995, (378), 681–689.

http://dx.doi.org/10.1038/378681a0

Brzozowski, A. M., Pike, A. C., Dauter, Z., Hubbard, R. E., Bonn, T., Engstrom, O., Ohman, L., Greene, G. L., Gustafsson J-A, Cariquist M. Molecular basis of agonism and antagonism in the oestrogen receptor. Nature 1997,(389), 753–758.

http://dx.doi.org/10.1038/39645

Voegel, J. J., Heine, M. J., Zechel, C., Chambon, P. Gronemeyer, H. TIF2, a 160 kDa transcriptional mediator for the ligand-dependent activation function AF-2 of nuclear receptors. EMBO J 1996, 15(14), 3667–3675.

Torchia, J., Rose, D. W., Inostroza, J., Kamei, Y., Westin, S., Glass, C. K., Rosenfeld, M. G. The transcriptional co-activator p/CIP binds CBP and mediates nuclear-receptor function. Nature1997, 387 (6634), 677-684.

http://dx.doi.org/10.1038/42652

Zhu, Y., Qi, C., Calandra, C., Rao, M. S. & Reddy, J. K. Cloning and identification of mouse steroid receptor coactivator-1 (mSRC-1), as a coactivator of peroxisome proliferator-activated receptor γ. Gene Expr 1996, 6 (3), 185-195.

Voegel, J. J., Heine, M. J., Tini, M., Vivat, V., Chambon, P., Gronemeyer, H. The coactivator TIF2 contains three nuclear receptor-binding motifs and mediates transactivation through CBP binding-dependent and -independent pathways. EMBO J 1998, 17(2), 507–519.

http://dx.doi.org/10.1093/emboj/17.2.507

Morris, G. M., Goodsell, D. S., Halliday, r. S., Huey, R., Belew, R. K., Olson, A. J. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function, J Comput Chem 1998, (14), 1639-1662.

http://dx.doi.org/10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B

Dolinsky, T. J., Nielsen, J.E., McCammon, J. A., Baker, N.A. PDB2PQR: an automated pipeline for the setup, execution, and analysis of Poisson- Boltzmann electrostatics calculations. Nucleic Acids Res, 2004, 32(suppl. 2), W665-667.

http://dx.doi.org/10.1093/nar/gkh381

Mathew, B.; Suresh, J.; Mathew, G.E.; Sonia, G.; Kumar, G.K. Design, Synthesis and Molecular Docking Studies of N-(furan-2- yl)-1-(5-substituted) phenyl-1, 3, 4-oxadiazol-2-yl) methanimines as Antitubercular Agents. Indian J Pharm Sci 2014, 76(5), 401-406.

Morris, G.M.; Huey, R.; Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D.S., Olson, A. J. Autodock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 2009, 30(16), 2785-2791.

http://dx.doi.org/10.1002/jcc.21256

Hong, H., Kohli, K., Garabedian, M. J., Stallcup, M. R. GRIP1, a transcriptional coactivator for them AF-2 transactivation domain of steroid, thyroid, retinoid, and vitaminD receptors. Mol Cell Biol 1997, 17(5), 2735-2744.

http://dx.doi.org/10.1128/MCB.17.5.2735

Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.