Journal of Pharmaceutical Chemistry

http://www.vensel.org/index.php/jphchem

X-ray crystal structure of N-benzyl-2-(4,6-diaminopyrimidin-2-ylthio)-acetamide

¹Ajay Kumar Timiri, ¹Barij Nayan Sinha, ^{1,*}Venkatesan Jayaprakash, ²Subasri S, ²Vijayan Viswanathan, ²Manish Kesherwani, ^{2,*}Velmurugan Devadasan

¹Department of Pharmaceutical Sciences and Technlogy, Birla Institute of Technology, Mesra-835215, Ranchi, Jharkhand, India. ²Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai-600025, Tamil Nadu, India.

Abstract: N-benzyl-2-(4,6-diaminopyrimidin-2-ylthio)acetamide, was synthesized by the reaction of 4,6diamino-pyrimidine-2-thiol with 2-chloro-N-benzyl acetamide in the presence of potassium hydroxide under reflux conditions and crystallized. X-ray diffraction intensity data were collected at room temperature (293k) on a Bruker axs SMART APEXII single crystal X-ray diffractometer equipped with graphite monochromatic Mo $K\alpha$ (λ =0.71073 Å) radiation and CCD detector. The compound crystallizes in the monoclinic P2₁/n space group with four molecules in the unit cell (a=8.5657(5) Å, b=9.3203(5) Å, c=18.2134(10) Å, α =90°, β =91.540(4) °, γ =90° and Z=4). The three dimensional molecular structure of this compound was determined by X-ray crystallography using SHELXS97 and later refined by SHELXL97 to a final R-value 4.3%. In the crystal, the molecular structure is stabilized by intramolecular N—H...S, C—H...N and C—H...O hydrogen bonds and the packing is stabilized by intermolecular N—H...N and N—H...O hydrogen bonds.

Keywords: Acetamide; crystal structure; 4,6-diamino pyrimidine; hydrogen bond; molecular dynamics

Figure 1. ORTEP diagram of N-benzy-2-(4,6-diaminopyrimidin-2-ylthio)-acetamide drawn at 30% probability.

Submitted on: Mar 15,2014 Revised on: Apr 29,2014 Accepted on: May 10,2014

*corresponding author: VJ Tel: +91-9470137264; E-mail: venkatesanj@bitmesra.ac.in; VD Tel: +91-9841075847; E-mail: shirai2011@gmail.com

1. Introduction

Diaminopyrimidines are an important class of six membered heterocyclics with many applications. Some derivatives of diaminopyrimidines are reported to have anticancer activity, selectively inhibiting c-Fms kinase of M-CSF-dependent myeloid leukemia cells;¹ other pyrimidine derivatives are immunosuppressants,² H4 receptor antagonists,³ hair growth stimulators,⁴ antibacterials,⁵ potential antimicrobial agents,⁶ potential anti-AIDS agents,⁷ antiviral⁸ and anti dermatic agents.⁹ In addition to these activities, 2,4-diamino-5cyano-6-[2-(phosphonomethoxy)ethoxy]pyrimidine

derivatives have anti-retro viral activity;¹⁰ and 2,4diamino pyrimidines have *in vivo* anti-trypanosoma brucei activity.¹¹ 2,4-diamino-6-(thioarylmethyl)pyrido[2,3-d]pyrimidine derivatives,¹² 2,4-diamino-5-(2'-arylpropagyl)pyrimidine

derivatives,¹³ 2,4-diamino-5-substituted-furo[2,3d]pyrimidine and 2-amino-4-oxo-6-substitutedpyrrolo[2,3-d]pyrimidines¹⁴ have DHFR inhibition activity. In search for antiviral agents against DENV, Nbenzyl-2-(4,6-diaminopyrimidin-2-ylthio)acetamide has been designed and synthesized for targeting NS2B-NS3 protease. The compound has been crystallized and Xray crystallographic data has been submitted to CDCC (CCDC 999396). **Figure 1** shows the Oak Ridge Thermal Ellipsoidal Plot (ORTEP)¹⁵ of N-benzyl-2-(4,6diaminopyrimidin-2-ylthio)acetamide.

2. Results and Discussion

As a part of a program of ongoing research in search for small molecule heterocyclics as inhibitors against DENV-protease, a diaminopyrimidine has been synthesized and subjected to X-ray crystallographic study. 2-(4,6-diaminopyrimidin-2-ylthio)-Nbenzylacetamide was synthesized according to the reaction outlined in **Scheme 1**. The reaction involves a nucleophillic substitution bimolecular (SN²) reaction mechanism. The biproduct hydrochloric acid is soluble in water, which is removed by filtration.

Scheme 1. Reagents and conditions: (a) KOH, EtOH, reflux, 2h

X-ray diffraction intensity data were collected at room temperature (293k) on a Bruker axs SMART APEXII single crystal X-ray diffractometer equipped with *Ajay Kumar et al.*

doi: 10.14805/jphchem.2014.art9

graphite monochromated Mo $K\alpha$ (λ =0.71073 Å) radiation and CCD detector. A crystal of dimensions 0.30 x 0.25 x 0.20 mm³ was mounted on a glass fiber using cyanoacrylate adhesive. The unit cell parameters were determined from 36 frames measured (0.5° phiscan) from three different crystallographic zones using the method of difference vectors. The intensity data were collected with an average four-fold redundancy per reflection and optimum resolution (0.75 Å). The intensity data collection, frames integration, Lorentz and polarization corrections and decay correction were carried out using SAINT-NT (version 7.06a) software.¹⁶ An empirical absorption correction (multi-scan) was performed using the *SADABS* program.¹⁶ The compound crystallizes in the monoclinic P21/n space group with four molecules in the unit cell.

The crystal structure was solved by direct methods using SHELXS-97 and refined by full-matrix leastsquares using SHELXL-97.17 The molecular geometry was calculated using PARST.¹⁸ The hydrogen atoms were placed in calculated positions with C—H = 0.93 Å to 0.96 Å, refined in the riding model with fixed isotropic displacement parameters: $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl group and U_{iso} (H) = $1.2U_{eq}$ (C) for other groups. The dihedral angle between the phenyl ring and the pyrimidine ring is 48.09(1)°. Molecular dynamics simulation studies [see Supporting information] carried out for 15ns reveals the variation of this angle in the range 0-54°. The amine group N4 and N5 attached with the pyrimidine ring deviate by -0.0230 (2)Å and 0.0120 (2)Å, respectively. Both pyrimidine ring and phenyl ring are essentially planar with a maximum deviation of 0.0069 (2) Å and 0.0010 (2) Å, respectively. The molecule adopts an extended conformation, which is evident from torsion angle (C7-N1-C8-C9=179.1 (1) °) (additional information is provided in Supporting information).

The crystal packing is shown in **Figure 2**. In the crystal, the molecular structure is stabilized by intramolecular N—H...S, C—H...N and C—H...O hydrogen bonds and the packing is stabilized by intermolecular N—H...N and N—H...O hydrogen bonds (**Figure 3**.). N5—H5A...N3 hydrogen bonds stabilize the crystal packing forming $R_2^2(8)$ dimers. The molecular graphics diagram (**Figure 3**.) ORTEP-3 was drawn using PLATON.^{15, 19}

Figure 2. Crystal packing diagram

Crystallographic data are listed in **Table 1**, selected bond lengths, bond angles and hydrogen bond data are listed in **Tables 2**, **3** and **4** respectively.

Figure 3. Inter and intramolecular hydrogen bonds Table 1. Crystal data and structure refinement

Table 1. Crystal data and structure refinement		Table 2. Selected Bond lengths [Å]		
Parameters	Compound I	Bond	Bond length[Å]	
Empirical formula	C ₁₃ H ₁₅ N ₅ O S	C(1), C(6)	1 271(2)	
Formula weight	289.36		1.371(2)	
Temperature (K)	293(2)	C(1)- C(2)	1.378(3)	
Wavelength(Å)	0.71073		1 271(2)	
Crystal system	Monoclinic	C(2)- $C(3)$	1.371(3)	
Spacegroup	P 21/n	C(3)- C(4)	1.358(4)	
Unit cell dimensions	a=8.5657(5)Å, b=9.3203(5)Å,	C(4)- C(5)	1.364(4)	
	c = 18.2134(10)Å and β = 91.540(4)°.	C(5)- C(6)	1.377(3)	
Volume (A ³)	1453.54 (14)	C(6)- C(7)	1.507(3)	
Z, Calculated density	4,1.322 Mg/m ³	C(7) N(1)	1 440(2)	
F(000)	608	C(7)- $N(1)$	1.440(5)	
Crystal size	$0.30 \ge 0.25 \ge 0.20 \text{ mm}^3$	C(8)- O(1)	1.226(2)	
Theta range for data collection	2.24 to 28.36°	C(8)- N(1)	1.325(2)	
Limiting indices	-11<=h<=11,	C(8)- C(9)	1.503(3)	
	-12<=R<=12, -22<=l<=24	C(9)- S(1)	1.798(2)	
Reflections collected / unique	13701 / 3597 [R(int) = 0.0203]	C(10)- N(2)	1.315(2)	
Completeness to theta	98.8 %	C(10)- N(3)	1.327(2)	
Max. and min. transmission	0.9562 and 0.9353	C(10)- S(1)	1.769(2)	
Kennement methou	on F ²			
Data / restraints /	3597 / 0 / 181	C(11)- N(4)	1.344(2)	
parameters		C(11)- N(2)	1.358(2)	
Goodness-of-fit on F^2	1.008	C(11) $C(12)$	1 200(2)	
Final R indices [I>2σ(I)]	R1 = 0.0426, wR2 =	6(11)-6(12)	1.500(2)	
	0.1134	C(12)- C(13)	1.384(2)	
R indices (all data)	R1 = 0.0603, wR2 = 0.1282	C(13)- N(5)	1.349(2)	
Largest difference peak	0.206e Å ⁻³ and -0.233e Å -3	C(13)- N(3)	1.356(2)	

Table 3. Selected Bond angles [°]

Bond	Bond angle [°]
C(6)- C(1)- C(2)	121.2(2)
C(3)- C(2)- C(1)	120.3(2)
C(4)- C(3)- C(2)	118.8(3)
C(3)- C(4)- C(5)	120.8(2)
C(4)- C(5)- C(6)	121.6(3)
C(1)- C(6)- C(5)	117.2(2)
C(1)- C(6)- C(7)	122.9(2)
C(5)- C(6)- C(7)	119.7(2)
N(1)-C(7)-C(6)	114.6(2)
0(1)-C(8)-N(1)	121.5(2)
O(1)-C(8)-C(9)	118.8(2)
N(1)-C(8)-C(9)	119.4(1)
C(8)- C(9)- S(1)	118.0(1)
N(2)- C(10)- N(3)	130.1(1)
N(2)- C(10)- S(1)	118.1(1)
N(3)- C(10)- S(1)	111.6(1)
N(4)- C(11)- N(2)	115.3(1)
N(4)-C(11)-C(12)	123.3(1)
N(2)-C(11)-C(12)	121.3(2)
C(11)-C(12)-C(13)	117.9(1)
N(5)- C(13)- N(3)	115.1(2)
N(5)-C(13)-C(12)	123.2(1)
N(3)-C(13)-C(12)	121.6(1)
C(8)- N(1)- C(7)	122.1(1)
C(10)-N(2)-C(11)	114.6(1)
C(10)-N(3)-C(13)	114.3(1)
C(10)-S(1)-C(9)	101.4(8)

 Table 4. Hydrogen Bonds

D—HA	D —H (Å)	HA (Å)	DA (Å)	D— HA [°]
N1— H1AS1 ⁱ	0.86	2.63	3.064(2)	112
N1— H1A01 ⁱⁱ	0.86	2.59	3.173(2)	126
N4— H4B01 ⁱⁱⁱ	0.86	1.96	2.816(2)	172
N5— H5A…N3 ^{iv}	0.86	2.34	3.145(2)	156
C1— H1N1 ⁱ	0.93	2.53	2.870(2)	102
C7— H7B01 ⁱ	0.97	2.39	2.740(2)	100

Symmetry codes: i= x, y, z; ii= ½-x, ½+y, ½-z; iii= -½-x, ½+y, ½-z;iv= -x, 2-y, -z

3. Experimental

Materials and methods: Chemicals and solvents were of reagent grade and purchased from Sigma-Aldrich/Merck/CDH/Rankem. Completion of reactions was monitored on TLC plates (Merck). Intermediates were characterized by their FT-IR spectra (FTIR-8400S-Schimadzu). X-ray diffraction intensity data were collected on Bruker axs SMART APEXII single crystal Xray diffractometer equipped with graphite monochromated Mo $K\alpha$ (λ =0.71073 Å) radiation and CCD detector.

3.1. Procedure for the synthesis of N-benzyl-2-(4,6-diaminopyrimidin-2-ylthiol)-acetamide

To a solution of 4,6-diamino-pyrimidine-2-thiol (0.5 g; 3.52 mmol) in 25 mL of ethanol in round bottom flask, potassium hydroxide (0.2g; 3.52 mmol) was added and refluxed for half an hour and to it 0.64g (3.52 mmol) of 2-chloro-N-benzyl acetamide was added and refluxed for 2hrs. When the end of reaction was observed by TLC, the precipitate was filtered, washed with cold water and dried to give 2-(4,6-diaminopyrimidin-2-ylthio)-N-benzylacetamide. Yield 92%. Mp 185-187 °C

3.2. Procedure for crystallization of N-benzyl-2-(4,6-diaminopyrimidin-2-ylthio)-acetamide

A single crystal suitable for X-ray diffraction was obtained by slow evaporation of a solution of the title compound in methanol at room temperature.

4. Conclusion

N-benzyl-2-(4,6-diaminopyrimidin-2-ylthio)-acetamide was synthesized and crystallized. The synthetic procedure and X-ray crystal structure are described. A molecular dynamics study indicates extensive variation in the dihedral angle between the phenyl ring and pyrimidine ring. Consequently the molecule can adopt many possible conformations as a biologically active therapeutics target, can make strong stacking interactions with aromatic residues and also has a great propensity for making intermolecular interactions. As diaminopyrimidines have antiviral activity, the synthesized compounds have been submitted for antiviral screening. The results of this study will be published at a later date.

Supplementary material

Crystallographic data (excluding structure factors) have been deposited with Cambridge Crystallographic Data Centre as supplementary publication number CCDC 999396 for N-benzyl-2-(4,6-diaminopyrimidin-2ylthio)-acetamide.

Acknowledgment

We are pleased to acknowledge the Department of Biotechnology (Government of India) for providing financial assistance.

References

- Xu, L. B.; Sun, W.; Liu, H. Y.; Wang, L. L.; Xiao, J. H.; Yang, X. H.; Li, S., Synthesis of 5-substituted benzyl-2,4-diamino pyrimidine derivatives as c-Fms kinase inhibitors. *Chinese Chem Lett* 2010, 21, 1318-21.
- Blumenkopf, T. A.; Mueller, E. E.; Roskamp, E. J. Preparation of 2,4-diaminopyrimidines as immunosuppressants. US20030191307A1, 2003.
- 3. Cowart, M. D.; Altenbach, R. J.; Liu, H.; Hsieh, G. C.; Drizin, I.; Milicic, I.; Miller, T. R.; Witte, D. G.; Wishart,

N.; Fix-Stenzel, S. R., Rotationally constrained 2, 4diamino-5, 6-disubstituted pyrimidines: a new class of histamine H4 receptor antagonists with improved druglikeness and in vivo efficacy in pain and inflammation models. *J Med Chem* 2008, 51, 6547-57.

- Mahe, Y.; Michelet, J.-F.; Pichaud, P.; Galey, J.-B. Preparation of 2-amino-4-alkylaminopyrimidine 3oxydes as hair growth stimulants. EP974586A1, 2000.
- Kandeel, M.; El-Meligie, S.; Omar, R.; Roshdy, S.; Youssef, K., Synthesis of certain 1, 2, 3-selenadiazole, 1, 2, 3-thiadiazole and 1, 2-oxazoline derivatives of anticipated antibacterial activity. *J Pharm Sci* 1994, 3, 197-205.
- Holla, B. S.; Mahalinga, M.; Karthikeyan, M. S.; Akberali, P. M.; Shetty, N. S., Synthesis of some novel pyrazolo [3, 4-< i> d</i>] pyrimidine derivatives as potential antimicrobial agents. *Bioorg Med Chem* 2006, 14, 2040-7.
- Nogueras, M.; Sánchez, A.; Melguizo, M.; Quijano, M. L.; Melgarejo, M., Synthesis of 5-glycosylamino pyrimidines. A new class of compounds with potential anti-aids activity. *Bioorg Med Chem Lett* 1993, 3, 601-6.
- Hocková, D.; Holý, A.; Masojídková, M.; Andrei, G.; Snoeck, R.; De Clercq, E.; Balzarini, J., 5-Substituted-2, 4-diamino-6-[2-(phosphonomethoxy) ethoxy] pyrimidines Acyclic Nucleoside Phosphonate Analogues with Antiviral Activity. J Med Chem 2003, 46, 5064-73.
- Bayrakdarian, M.; Butterworth, J.; Hu, Y.-J.; Santhakumar, V.; Tomaszewski, M. J., Development of 2, 4-diaminopyrimidine derivatives as novel SNSR4 antagonists. *Bioorg Med Chem* 2011, 21, 2102-5.
- Hocková, D.; Holý, A. n.; Masojídková, M.; Andrei, G.; Snoeck, R.; De Clercq, E.; Balzarini, J., Synthesis and antiviral activity of 2,4-diamino-5-cyano-6-[2-(phosphonomethoxy)ethoxy]pyrimidine and related compounds. *Bioorg Med Chem* 2004, 12, 3197-202.
- Perales, J. B.; Freeman, J.; Bacchi, C. J.; Bowling, T.; Don, R.; Gaukel, E.; Mercer, L.; Moore Iii, J. A.; Nare, B.; Nguyen, T. M.; Noe, R. A.; Randolph, R.; Rewerts, C.; Wring, S. A.; Yarlett, N.; Jacobs, R. T., SAR of 2amino and 2,4-diamino pyrimidines with in vivo efficacy against Trypanosoma brucei. *Bioorg Med Chem Lett* 2011, 21, 2816-9.
- 12. Gangjee, A.; Adair, O.; Queener, S. F., Synthesis of 2,4-Diamino-6-(thioarylmethyl)pyrido[2,3d]pyrimidines as dihydrofolate reductase inhibitors. *Bioorg Med Chem* 2001, 9, 2929-35.
- Algul, O.; Paulsen, J. L.; Anderson, A. C., 2,4-Diamino-5-(2'-arylpropargyl)pyrimidine derivatives as new nonclassical antifolates for human dihydrofolate reductase inhibition. J Mol Graph Model 2011, 29, 608-13.
- Gangjee, A.; Yang, J.; McGuire, J. J.; Kisliuk, R. L., Synthesis and evaluation of a classical 2,4-diamino-5-substituted-furo[2,3-d]pyrimidine and a 2-amino-4-oxo-6-substituted-pyrrolo[2,3-d]pyrimidine as antifolates. *Bioorg Med Chem* 2006, 14, 8590-8.
- 15. Farrugia, L. J., WinGX and ORTEP for Windows: an update. *J Appl Crystallogr* 2012, 45, 849-854.
- Bruker, A., APEX2-Software Suite for Crystallographic Programs. Bruker AXS, Inc., Madison, WI, USA 2009.
- 17. Sheldrick, G., A short history of SHELX. Acta Crystallogr A 2008, 64, 112-22.
- Nardelli, M., PARST95 an update to PARST: a system of Fortran routines for calculating molecular structure parameters from the results of crystal structure analyses. J Appl Crystallogr 1995, 28, 659.
- 19. Spek, A., Structure validation in chemical crystallography. *Acta Crystallogr D* 2009, 65, 148-55.