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Abstract
Thiazolidinediones (TZDs), a well-known target of peroxisome proliferated receptors
(PPARγ), have been clinically used as antidiabetic agents. PPARs belong to the nuclear
receptor superfamily and are important targets (PPARs) for drugs that treat various
metabolic disorders such as diabetes. We present comparative research on the meta-
para substitution of benzylidene derivatives of thiazolidine-2,4-diones to identify their
potential as modulators of PPARγ. PPARs are key drug targets in treating a range
of metabolic disorders. In our previous study, we described 4-hydroxy benzylidene
derivatives of thiazolidine-2,4-diones that exhibited a reversed orientation in the active
site of PPARγ. The established pharmacophore was also discussed concerning the reversed
conformation of the TZD fitting. In current silico studies, a focus is placed on meta-para-
substituted benzylidene derivatives to identify H-bonding interactions analogous to those
observed in the acidic head of rosiglitazone. All designed compounds exhibited strong
hydrogen bonding interactions and displayed superior interaction energies compared to
their monohydroxy counterparts. The results of a predicted ADMET report indicated that
all molecules exhibited favourable hERG I & II properties, suggesting excellent metabolic
stability.
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1. Introduction
Type-2 diabetes mellitus (T2DM) or non-insulin dependent diabetes mellitus (NIDDM)
represents a significant concern affecting more than 180 million people worldwide,
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and this number is expected to reach 366 million in 2030[1]. T2DM can be con-
sidered a complex disorder resulting from impaired insulin secretion or developing
resistance. The most widely available antidiabetic medications can be classified into
insulin secretagogues and sensitizers. The first category examples are sulfonylureas
and meglitinides, while metformin and thiazolidinediones act as (TZDs) are insulin
sensitizers. Following the discovery of PPARγ, the first class of synthetic ligands to
bind it specifically consisted of thiazolidinediones-2,4-diones (TZDs) [2]. TZDs are
crucial heterocyclic ring systems [3] that act as insulin sensitizers and promote glucose
utilization in peripheral tissues [4]. The PPARγ is a nuclear hormone receptor family
member that requires the ligand-binding recruitment of various coactivator proteins
to stimulate further gene transcription machinery [5]. Being the most extensively
studied receptor among the other two subtypes of PPAR, i.e., PPARα and PPARβ/δ,
PPARγ is found to be involved in various metabolic-related applications and has three
isoforms: PPARγ1, PPARγ2, and PPARγ3 [3]. The first subtype, i.e., PPARγ1, shows
ubiquitous tissue expression, with its presence in adipose tissue, heart, large and small
intestines, kidneys, pancreas, and skeletal muscle [6]. At the same time, PPARγ2 is
predominantly present in adipose tissue, and PPARγ3 expression is limited to adipose
tissue, macrophages, and the epithelial wall of the colon [7, 8].
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Figure 1. PPARγ marketed drugs

As discussed earlier, TZDs, commonly called “glitazones”, act as PPARγ agonists
by playing a role in insulin sensitization and lowering glucose and fatty acid levels in
type 2 diabetic patients (Fig. 1). The history of TZDs came into the picture in the early
1960s and 1970s, when various research groups explored anti-TB, anticonvulsants,
and various other toxicological and pharmacological aspects [9–14]. However, in
1982, the research on TZDs gained high standards when Sohda and co-workers
reported ciglitazone for clinical evaluation in hyperglycemia [15], which later failed
to reach a clinical trial. Continuous research on TZDs resulted in Troglitazone [16],
Pioglitazone [17], and rosiglitazone [18, 19], and the associated toxicity and side
effects such as weight gain, hepatotoxicity, oedema, cardiotoxicity, and increased risk
of bone fracture limit their use. This safety-related concern encourages us toward the
search for and development of a novel PPARγ modulator. Based on this background,
we reported a series of benzylidene derivatives of TZD having a substitution at ring
N- of TZD. Based on the earlier observation of orientation and other in silico studies
in the case of para hydroxy substitution, we designed and studied the introduction of
other possible substitutions (Fig. 2).
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Figure 2. PPARγ modulator design

2. Results & discussion

2.1 Molecular docking simulation

Molecular docking simulation studies were conducted to understand the atomic level
interaction and other structural features of designed molecules (1-11) with PPARγ
(PDB: 2PRG) receptor (Table 1). Before starting the simulation with the designed
molecules, the redocking method was carried out to validate the docking protocol, and
the root-mean-square deviation (RMSD) for the co-crystallized ligand, rosiglitazone,
was obtained as 2.33 . Interaction of rosiglitazone with its re-docked pose shows
its lipophobic head region, establishing three H-bonding interactions with Ser289,
His323, and His449. In comparison, the effector region establishes one H bonding
nonpolar interaction with Ser342 (Fig. 3). Earlier, it was observed that the presence
of the para hydroxy group in the benzylidene portion causes a dramatic reversal in the
binding orientation compared with unsubstituted benzylidine. To get more effective
PPARγ modulators, we tried to introduce meta-para substitution on the phenyl ring
of the benzylidene portion. While analyzing the docked conformers, we observed
an interesting fact that the introduction of the methoxy group at the meta position
could not produce any new hydrogen bonding interaction compared with previously
designed molecules. It was observed that the presence of the para hydroxy group is
only interacting with the catalytic residues. Surprisingly, there are some variations in
the energy potential of certain molecules compared to simple para hydroxy-substituted
benzylidiene compounds. It was also observed that the orientation of binding for all
the designed molecules aligned in the same arrangement and were found to bind into
the ligand-binding domain (LBD), thus sharing a very similar mode when compared
with PPARγ full agonist, rosiglitazone (Fig. 4).

The three primary interaction energies (van der Waals, electrostatic, and hydrogen
bonding) of all the docked compounds were determined to be more potent than those
of rosiglitazone (Table 1). Increasing the ring size (compounds 2 and 3) led to
interactions similar to that of rosiglitazone (Fig. 3).
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2.2 ADME/Tox parameters

All the designed derivatives were evaluated for Lipinski and Jorgensen’s violation using
QikProp v3.0 (Schrödinger LLC). All the molecules in the designed library were
found to obey the desired characteristic and thus assumed to have better drug-like
properties (Table 1). Some other ADMET properties were evaluated once again
in the continuation of our previously reported work using the pkCSM webserver
(https://biosig.lab.uq.edu.au/pkcsm/) and are presented inTable 2. It has been observed
that incorporating the meta methoxy group, all designed compounds showed better
intestinal absorption and thus supported the strong drug-like behaviour of the designed
molecules. The other parameters related to distribution and excretion were also in
the acceptable range and showed some remarkable differences from earlier designed
molecules. One of the paramount parameters that received significant attention
pertains to cardiotoxicity (hERG-I and II), which was observed to be within acceptable
limits. This indicates that introducing meta-para substitution in the phenyl ring of the
benzylidene moiety of thiazolidinedione derivatives results in a notable improvement
in the ADME/TOX profile.

3. Conclusion

In the continuation of introducing meta-para substitution, all the designed thiazolidine-
diones derivatives (1-11) were more potent and better selective PPARγ agonists. The
results obtained by docking studies could be utilized to develop more potent, effective
novel 2,4-thiazolidinediones derivatives with PPARγ modulatory activity. All the
designed derivatives showed significant differences in glide docking scores compared
with the marketed drugs. The interactions of all the designed derivatives with the
receptors show a promising path by introducing a meta-para substitution group and
showing a path to designing more potent PPARγ modulators. The ADMET proper-
ties of most of the designed compounds show major differences to behave as more
potent and have lead-like properties compared with the para-substituted hydroxy
group. Predicted cardiotoxicity studies show that molecules having a TZD ring with
N-substitution may serve as a better alternative to the existing drugs in the PPARγ
market. The design strategy adopted has significantly improved the permeability
characteristics compared to rosiglitazone.

4. Experimental

Materials andmethods:

All computational studies were conducted on a Dell Precision workstation running
an RHEL-5.0 Operating System, equipped with an Intel Core 2 Quad processor, 8
GB RAM, and a 500 GB hard disk. Simulations utilized Maestro-8.5 (Schrödinger
LLC). In silico ADME/TOX profiling was executed using the pkCSM [20] web
server, hosted by VLS3D (Cambridge University). The 2D plots were generated
using Ligplot [21].
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4.1 Molecular docking simulation
4.1.1 Preparation of protein
To understand the molecular-level interactions, molecular docking simulations of
compounds (1-11) were conducted using the X-ray crystal structure of PPARγ (PDB:
2PRG), obtained from the Protein Data Bank (https://www.rcsb.org/). The 2PRG
structure is a trimer (A, B, and C) and contains the protein with rosiglitazone as a
co-crystallized ligand. For the molecular simulation studies, chain A was chosen [22].
The Protein Preparation Wizard in Maestro-8.4 (Schrödinger LLC) was employed
to prepare the protein using default parameters, followed by minimization using
OPLS2005.

4.1.2 Generation of Grid
The minimized protein structure was utilized to generate a grid, with the co-crystallized
ligand rosiglitazone as the reference to identify the drug’s binding sites on the target.
The grid for docking was created with default parameters from the module. This
generated grid was then employed for the subsequent docking of new molecules.

4.1.3 Preparation of Ligands
The ligand structures were initially sketched in 3D format using a building panel
and subsequently refined for docking using the LigPrep module. These molecules
underwent energy minimization using the OPLS-2005 force field to yield a single
low-energy 3D structure for each input compound.

4.1.4 Docking protocol
The docking simulation was conducted using the Glide XP (Extra Precision) protocol
in Glide, employing the default parameters. The "Write XP descriptors" option was
enabled to create the .xpdes file. The resulting favourable ligand poses were then
analyzed using the XP visualizer.

4.2 ADMET/ TOX parameters prediction
In 1997, Christopher A. Lipinski formulated the rule of drug-likeness known as
Lipinski’s Rule of Five (Ro5). This rule can be considered a necessary filtration tool
to ensure a drug-like pharmacokinetics profile for designing a plausible therapeutic
agent [23]. Jorgensen’s Rule of Three (Ro3) is also an additional tool for evaluating
the designed compounds in the search for drug-like properties evaluation [24]. All
the designed molecules were evaluated for their conformity with Ro5 and Ro3 using
QikProp v3.0. Ligprep output was used as input for QikProp, and the results were
presented in Table 1.

ADMET parameters were predicted using the pkCSM web server [20]. ADME/TOX
parameters such as water solubility, CaCo2 permeability, intestinal absorption, P-
glycoprotein, the volume of distribution, blood-brain barrier (BBB), and CNS per-
meability, along with toxicity parameters such as AMES toxicity (mutagenicity) and
cardiotoxicity (hERG-I & II inhibition) [25] were predicted and presented in Table 2.
The properties were also predicted for standard drugs and used for comparison.
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